

Published on Web 11/08/2002

Rearrangement of Symmetrical Dicubane Clusters into Topological Analogues of the P Cluster of Nitrogenase: Nature's Choice?

Yugen Zhang, Jing-Lin Zuo, Hong-Cai Zhou, and R. H. Holm*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

Received August 1, 2002

The electron-transfer P cluster (Fe₈S₇) and the catalytic cofactor cluster (MFe₇S₉; M = Mo, V) of the MoFe protein of nitrogenase¹⁻³ have been assembled only by biosynthesis. Noting spectroscopic evidence that the protein as normally isolated contains substantially reduced clusters (majority of Fe(II)),⁴⁻⁶ we are investigating the reactivity of reduced Fe-S7 and M-Fe-S8-12 clusters, often with tertiary phosphine ligation as a device to stabilize low oxidation states. We describe here the use of reduced clusters in the synthesis of the initial molecular topological analogues of the P cluster in the crystallographically defined PN state.^{13,14} The synthetic procedure, outlined in Scheme 1, includes both molybdenum- and vanadium-containing clusters; heterometal M and charge z are specified. To ensure regioselective reactions and avoidance of potentially isomeric final products, tris(pyrazolyl)hydroborate(1-)(Tp) at the heterometal site is a protecting group and in single cubanes a stipulator of trigonal symmetry. All structures have been proven by X-ray structure determinations.^{11,12,15}

Treatment of $[(Tp)MoFe_3S_4Cl_3]^{1-11}$ (1, $[MoFe_3S_4]^{3+}$) with 5 equiv each of PEt₃ and NaBPh₄ for 12 h results in reductive substitution and formation of $[(Tp)MoFe_3S_4(PEt_3)_3]^{1+}$ (3, $[MoFe_3S_4]^{2+}$), isolated as the BPh₄⁻ salt¹⁵ (80%). Reduction of 3 with 1.3 equiv of (Bu₄N)(BH₄) for 16 h gives the neutral edge-bridged double cubane $[(Tp)_2Mo_2Fe_6S_8(PEt_3)_4]$ (5, 70%). Its structure¹⁵ resembles that of $[(Cl_4cat)_2(Et_3P)_2Mo_2Fe_6S_8(PEt_3)_4]^{8,9}$ (9) but is more reduced, being the first example of an isolated $[MoFe_3S_4]^{1+}$ cluster. Reaction of a slurry of 5 with 4 equiv of $(Et_4N)(HS)$ causes the solid to dissolve immediately with formation of $[(Tp)_2Mo_2Fe_6S_9(SH)_2]^{3-}$ (7). Slow diffusion of ether into the reaction mixture leads to separation of $(Et_4N)_3$ [7]·9MeCN (73%). The reaction sequence 2 $\rightarrow 4 \rightarrow 6$ of vanadium-containing clusters has been demonstrated recently.¹² The double cubane [(Tp)₂V₂Fe₆S₈(PEt₃)₄] (6) is isostructural with 5 and is also strongly reduced (2[VFe₃S₄]¹⁺). It reacts similarly with 4 equiv of (Et₄N)(HS) to form [(Tp)₂V₂Fe₆S₉(SH)₂]⁴⁻ [8], isolated as (Et₄N)₄[8]·6MeCN (70%).

Clusters **7** and **8** are isostructural and nearly isometric.¹⁵ The structure of vanadium cluster **8**, which has crystallographically imposed C_2 symmetry, is set out in Figure 1. The core exhibits the

Figure 1. (Upper) Structure of cluster **8** in which a crystallographic C_2 axis passes through μ_6 -S(4) and the center of square Fe(1,1')(2,2') and relates primed and unprimed atoms. (Lower) Best-fit superposition of the V₂Fe₆S₉ core of **8** and the Fe₈S₇(μ_2 -S_{Cys})₂ core of the *Klebsiella pneumoniae* P^N cluster,¹⁴ which in its entirety is Fe₈S₇(μ_2 -S_{Cys})₂(S_{Cys})₄. The bridging cysteinate atoms are simulated by S(5,5') and two terminal cysteinates by S(6,6') of **8**.

bridging pattern [V₂Fe₆(μ_2 -S)₂(μ_3 -S)₆(μ_6 -S)], which reduces to two distorted cuboidal fragments VFe₃(μ_3 -S)₃ sharing the common bridge atom μ_6 -S(4) and externally bridged by μ_2 -S(5,5'). Each iron atom has distorted tetrahedral stereochemistry, with terminal hydrosulfide ligands at Fe(3,3') and trigonally distorted octahedral coordination at the vanadium atoms with parameters typical of Tp binding.^{11,12} The most conspicuous individual feature of **7** and **8** is the infrequently encountered μ_6 -S atom, at which there are nine independent Fe–S–Fe angles. Three of these are notably obtuse, Fe(3)–S(4)–Fe(1',2',3') = 136–141°, and convey the open nature

^{*} To whom correspondence should be addressed. E-mail: holm@chemistry.harvard.edu.

of the structure along the Fe(3,3')S(4) edge at which the angle is $140.8(1)^{\circ}$. In 7 the range is similar $(135-141^{\circ})$, and the edge angle is 141.0(1)°. Other parameters in both structures occur in the intervals normally found for cubane-type Fe₄S₄ and MFe₃S₄ structures.^{7,11,12,16} However, the most important result is that the core shapes of 7 and 8 are clearly similar to that of the P^N cluster as determined in two different enzymes.^{13,14} Shown in Figure 1 is a best-fit superposition of the 17 atoms of the V₂Fe₆S₉ core of 8 and the $Fe_8S_7(\mu_2-S_{Cys})_2$ core of the P^N cluster, described by a weighted rms deviation of 0.33 Å. For the Mo₂Fe₆S₉ core of 7 and the P^N cluster, the corresponding value is 0.38 Å. Notwithstanding the less precise protein data, obtained at resolutions of 2.0 and 1.6 Å for the proteins from Azotobacter vinelandii¹³ and Klebsiella pneumoniae,14 respectively, we conclude that the synthetic and native cluster cores approach congruency. Other than the presence of six-coordinate heterometals, a number of apparent differences contribute to the structural deviations. Among these is a much larger edge-bridge angle (158° in the P cluster) and its attendant effect on atom positions. Of lesser influence is the presence of two Fe- $(\mu_2$ -S)-Fe bridges at the periphery of **7** and **8** (74.6-77.6°) instead of two Fe– $(\mu_2$ -S_{Cys})–Fe bridges (73°, 76°) as in the protein.

The core structure of 7 has been observed before as sulfidebridged fragments in the high-nuclearity clusters [(Cl₄cat)₆(Et₃P)₆- $Mo_6Fe_{20}S_{30}^{8-17}$ and $[(Cl_4cat)_2(Et_3P)_4Mo_4Fe_{12}S_{20}K_3(DMF)]^{5-.10}$ These clusters were prepared by the reaction of edge-bridged 9 with (Et₄N)(SH) under specific reaction and workup conditions. Their formation also illustrates the value of reduced double cubanes as precursors to new structures. However, because of the complicated and tight sulfide-bridged cluster structures, properties intrinsic to the fragments of interest, such as oxidation level, charge distribution, and redox states, cannot be deconvoluted from those of the whole clusters. *Molecular* clusters 7 and 8 provide that opportunity. Oxidation states of metal atoms in heterometal clusters are often difficult to assess. Terminal Fe-SR bond lengths increase as the oxidation level of Fe₄S₄ clusters decreases. The Fe-SH distances in 7 (mean 2.291 Å) and 8 (2.327(3) Å, when compared with the values in [Fe₄S₄(SH)₄]²⁻ (mean 2.262 Å)¹⁸ and [Fe₄S₄(SH)₄]³⁻ (2.317(2) Å),¹⁶ are consistent with substantial Fe(II) character at these sites. The Mössbauer spectrum¹⁵ of 8 at 4.2 K consists of two overlapping doublets fitted in an intensity ratio of 3:1. The majority/minority doublet has $\delta = 0.52/0.59$ mm/s (mean 0.54 mm/ s) and $\Delta E_0 = 1.23/0.65$ mm/s. The spectrum of **7** is a broadened quadrupole doublet with $\delta = 0.55$ mm/s and $\Delta E_Q = 0.62$ mm/s. While comparison with isomer shifts of other reduced clusters7,9-12 is not precise because of differences in structure and terminal ligands, we do note the values for [Fe₄S₄(SEt)₄]³⁻ (0.59 mm/s), double cubane $\{(Tp)_2Mo_2Fe_6S_8(SPh)_4\}^{4-}$ (0.64 mm/s), and the P^N cluster (~ 0.64 mm/s)⁴ and conclude that 7 and 8 are substantially reduced clusters. In keeping with its reduced nature, 7 shows three quasireversible oxidations at $E_{1/2} = -1.09$, -0.71, and -0.43 V; redox steps of 8 appear to be irreversible. Electronic structural properties of these clusters will be described subsequently.

The apparent means of formation of 7 and 8 can be summarized by the reaction $[(Tp)_2M_2Fe_6S_8(PEt_3)_4] + 4HS^- \rightarrow [(Tp)_2M_2Fe_6S_9 (SH)_2]^{4-}$ + H₂S + 4PEt₃. In the case of 7 (for which $E_{1/2}$ (4-/3-)

< -1.1 V), the cluster is isolated in a one-electron oxidized form; the oxidant is currently unknown. While clusters 5 and 6 have nonphysiological Tp ligands and a core structure yet to be found in a protein-bound condition, this reaction does raise a provocative question in biosynthesis. Can two closely juxtaposed Fe_4S_4 clusters be induced to coalesce into the P^N topology by reaction with hydrosulfide? Further, is the P cluster a precursor to the all-iron nitrogenase cofactor, and are one Fe₄S₄ cluster and one MFe₃S₄ cluster component building blocks to the FeMo- and FeV-cofactor clusters of nitrogenase? Last, we note the contributions of others in the synthesis of clusters relevant to nitrogenase clusters by use of reduced Mo-Fe-S double cubanes.19,20

Acknowledgment. This research was supported by NIH Grant GM 28856.

Supporting Information Available: Crystallographic data in CIF format of the compounds in footnote 15. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965–2982.
 Eady, R. R. Chem. Rev. 1996, 96, 3013–3030.
 Smith, B. E. Adv. Inorg. Chem. 1999, 47, 160–218.

- (4) McLean, P. A.; Papaefthymiou, V.; Orme-Johnson, W. H.; Münck, E. J. (i) *Biol. Chem.* **1987**, *262*, 12900–12903.
 (5) Lee, H.-I.; Hales, B. J.; Hoffman, B. M. J. Am. Chem. Soc. **1997**, *119*,
- 11395 11400.
- (6) Yoo, S. J.; Angove, H. C.; Papaefthymiou, V.; Burgess, B. K.; Münck, E. J. Am. Chem. Soc. 2000, 122, 4926–4936.
- Goh, C.; Segal, B. M.; Huang, J.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 11844–11853.
- (8) Demadis, K. D.; Campana, C. F.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 7832–7833.
- (9) Osterloh, F.; Segal, B. M.; Achim, C.; Holm, R. H. Inorg. Chem. 2000, 39, 980–989. (10) Osterloh, F.; Achim, C.; Holm, R. H. Inorg. Chem. 2001, 40, 224-32.
- (11) Fomitchev, D. V.; McLauchlan, C. C.; Holm, R. H. Inorg. Chem. 2002, 41.958-966
- (12) Hauser, C.; Bill, E.; Holm, R. H. *Inorg. Chem.* 2002, *41*, 1615–1624.
 (13) Peters, J. W.; Stowell, M. H. B.; Soltis, S. M.; Finnegan, M. G.; Johnson, M. K.; Rees, D. C. *Biochemistry* 1997, *36*, 1181–1187.
- (14) Mayer, S. M.; Lawson, D. M.; Gormal, C. A.; Roe, S. M.; Smith, B. E.
- J. Mol. Biol. 1999, 292, 871-891. (15) Experimental Details: All reactions were carried out under strictly anaerobic conditions in acetonitrile; products were isolated as black, air-sensitive solids. X-ray diffraction data ($\theta = 1.2-22.5^{\circ}$) were collected at 213 K on a Siemens SMART CCD-based diffractometer; structures were solved and refined by standard methods. [2](BPh₄): rhombohedral (R3); a = 15.4332(8) Å, c = 44.421(5) Å; Z = 6, R1(wR2) = 0.066(0.198). 5: monoclinic $(P2_1/n)$; a = 11.2863(9) Å, b = 25.282(2) Å, c = 12.8320(9)The function of the function $\beta = 96.441(5)^\circ$, Z = 4, R1(wR2) = 0.074(0.160). The ¹H NMR spectra of 1–4 and 5–8 in CD₂CN are consistent with three-fold and two-fold symmetry, respectively. Isomer shifts δ of ⁵⁷Fe are referenced to Fe metal at room temperature; all quoted values are at 4.2 K
- (16) Segal, B. M.; Hoveyda, H. R.; Holm, R. H. Inorg. Chem. 1998, 37, 3440-
- (17) Osterloh, F.; Sanakis, Y.; Staples, R. J.; Münck, E.; Holm, R. H. Angew. Chem., Int. Ed. 1999, 38, 2066–2070.
- Müller, A.; Schladerbeck, N.; Bögge, H. J. Chem. Soc., Chem. Commun. (18)1987. 35-36 (19) Han, J.; Beck, K.; Ockwig, N.; Coucouvanis, D. J. Am. Chem. Soc. 1999,
- 121, 10448-10449 (20) Coucouvanis, D.; Han, J.; Moon, N. J. Am. Chem. Soc. 2002, 124, 216-224.

JA0279702